EVAL-AD5233SDZ User Guide
 UG-350

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Evaluation Board for the AD5233 Digital Potentiometer

FEATURES

Full featured evaluation board for the AD5233
Several test circuits
Various ac/dc input signals
PC control via a separately purchased system demonstration platform (SDP-B)
PC control software
12 extra bytes in EEMEM for user-defined information Resistor tolerance error stored in EEMEM

PACKAGE CONTENTS

EVAL-AD5233SDZ board

CD that includes
Self-installing software that allows users to control the board and exercise all functions of the device
Electronic version of the AD5233 data sheet
Electronic version of the UG-350 user guide

GENERAL DESCRIPTION

This user guide describes the evaluation board for evaluating the AD5233-a quad-channel, 64-position, nonvolatile memory digital potentiometer. With versatile programmability, the AD5233 allows multiple modes of operation, including read/write access in the RDAC and EEMEM registers, increment/decrement of resistance, resistance changes in $\pm 6 \mathrm{~dB}$ scales, wiper setting readback, and extra EEMEM for storing user-defined information, such as memory data for other components or a lookup table.

The AD5233 supports dual-supply $\pm 2.5 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ operation and single-supply 2.7 V to 5.5 V operation, making the device suited for battery-powered applications and many other applications. In addition, the AD5233 uses a versatile SPI-compatible serial interface, allowing speeds of up to 50 MHz .

The EVAL-AD5233SDZ can operate in single-supply and dualsupply mode and incorporates an internal power supply from the USB.

Complete specifications for the AD5233 part can be found in the AD5233 data sheet, which is available from Analog Devices, Inc., and should be consulted in conjunction with this user guide when using the evaluation board.

DIGITAL PICTURE OF EVALUATION BOARD WITH SYSTEM DEMONSTRATION PLATFORM

Figure 1.

TABLE OF CONTENTS

Features 1
Package Contents. 1
General Description 1
Digital Picture of Evaluation Board with System DemonstrationPlatform1
Revision History 2
Evaluation Board Hardware 3
Power Supplies 3
Link Options 3
Test Circuits 4
Evaluation Board Software 6
Installing the Software 6
Running the Software 6
Software Operation 7
Evaluation Board Schematics and Artwork 8
Ordering Information 14
Bill of Materials. 14

REVISION HISTORY

12/11-Revision 0: Initial Version

EVALUATION BOARD HARDWARE

POWER SUPPLIES

The EVAL-AD5233SDZ supports the use of single and dual power supplies.

In single-supply mode, the evaluation board can be powered either from the SDP port or externally by the J1-1, J1-2, and J1-3 connectors, as described in Table 1.

If dual-supply mode is required, the J1-1, J1-2, and J1-3 connectors must provide the external power supply, as described in Table 1.

All supplies are decoupled to ground using $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

Table 1. Maximum and Minimum Voltages of the Connectors

Connector No.	Label	Voltage
$\mathrm{J} 1-1$	EXT VDD	Analog positive power supply, V_{DD}. For single-supply operation, it is 2.7 V to 5.5 V. For dual-supply operation, it is 2.5 V to 2.75 V.
J .2		GND
$\mathrm{J1-3}$	Analog ground.	

Table 3. Link Functions

Link No.	Power Supply	Options
A25	$V_{\text {DD }}$	This link selects one of the following as the positive power supply: $5 \mathrm{~V} \text { (from SDP-B). }$ 3.3 V (from SDP-B). EXT VDD (external supply from the J1-1 connector).
A24	Vss	This link selects one of the following as the negative power supply: GND (analog ground). EXT VSS (external supply from the J1-3 connector).

TEST CIRCUITS

The EVAL-AD5233SDZ incorporates several test circuits to evaluate the AD5233 performance.

DAC

RDAC1 can be operated as a digital-to-analog converter (DAC), as shown in Figure 2.

Figure 2. DAC
Table 4 shows the options available for the voltage references.
Table 4. DAC Voltage References

Terminal	Link	Options	Description
A1	A20	AC + DC	Connects Terminal A1 to $\left(V_{D D}-V_{S S}\right) / 2$ Connects Terminal A1 to VDD
W1	BUF-W1	VDD	Connects Terminal W1 to an output buffer
B1	A21	DC	Connects Terminal B1 to (VDD - Vss) $/ 2$ Connects Terminal B1 to VSS Connects Terminal B1 to analog ground

The output voltage is defined in Equation 1.

$$
\begin{equation*}
V_{\text {OUT }}=\left(V_{A I}-V_{B I}\right) \times \frac{R D A C 1}{64} \tag{1}
\end{equation*}
$$

where:
$R D A C 1$ is the code loaded in the RDAC1 register.
$V_{A 1}$ is the voltage applied to the A1 terminal (A20 link).
$V_{B 1}$ is the voltage applied to the B1 terminal (A21 link).
Using the R34 and R35 external resistors, the user can reduce the voltage of the voltage references. In this case, use the A1 and B 1 test points to measure the voltage applied to the A1 and B1 terminals and recalculate $\mathrm{V}_{\mathrm{A} 1}$ and $\mathrm{V}_{\mathrm{B} 1}$ in Equation 1.

AC Signal Attenuation

RDAC1 can be used to attenuate an ac signal, which must be provided externally using the AC_INPUT connector, as shown in Figure 3.

Figure 3. AC Signal Attenuator
Depending on the voltage supply rails and the dc offset voltage of the ac signal, various configurations can be used, as described in Table 5.

Table 5. AC Signal Attenuation Link Options

Voltage Supply	Maximum AC Signal Amplitude	Link	Options	Conditions
Single	$V_{\text {DD }}$	A20	$\mathrm{AC}+\mathrm{DC}$	No dc offset voltage. AC signal is outside the voltage supply rails due to the dc offset voltage. DC offset voltage $\neq \mathrm{V}_{\mathrm{DD}} / 2 .{ }^{1}$ All other conditions.
		A21	DC GND	Use in conjunction with $A C+D C$ link. All other conditions.
Dual	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$	A20	$\mathrm{AC}+\mathrm{DC}$ AC	AC signal is outside the voltage supply rails due to the dc offset voltage. DC offset voltage $\neq 0 \mathrm{~V}$. ${ }^{1}$ All other conditions.
		A21	$\begin{aligned} & \hline \text { GND } \\ & \text { vss } \end{aligned}$	Use in conjunction with $A C+D C$ link. All other conditions.

${ }^{1}$ Recommended to ensure optimal total harmonic distortion (THD) performance.
The signal attenuation is defined in Equation 2.

$$
\begin{equation*}
\text { Attenuation }(\mathrm{dB})=20 \times \log \left(\frac{R_{\text {WBI }}+R_{W}}{R_{E N D-T O-E N D}}\right) \tag{2}
\end{equation*}
$$

where:
$R_{W B 1}$ is the resistor between the W 1 and B 1 terminals.
R_{W} is the wiper resistance.
$R_{\text {END-TO-END }}$ is the end-to-end resistance value.

In addition, R36 can be used to achieve a pseudologarithmic attenuation. To do so, adjust the R36 resistor until a desirable transfer function is found.

Signal Amplifier

RDAC2 can be operated as an inverting or noninverting signal amplifier supporting linear or pseudologarithmic gains. Table 6 shows the available configurations.

Table 6. Amplifier Selection Link Options

Amplifier	Gain	Link	Label 1
Noninverting	Linear	A27	LINEAR
		A29	NON-INVERTING
		A30	NON-INVERTING
	Pseudologarithmic	A27	PSEUDOLOG
		A29	NON-INVERTING
		A30	NON-INVERTING
Inverting	Linear	A27	LINEAR
		A29	INVERTING
		A30	INVERTING
	Pseudologarithmic	A27	PSEUDOLOG
		A29	INVERTING
		A30	INVERTING

${ }^{1}$ See Figure 17.
The noninverting amplifier with linear gain is shown in Figure 4, and the gain is defined in Equation 3.

$$
\begin{equation*}
G=1+\frac{R_{W B 2}}{R 38} \tag{3}
\end{equation*}
$$

where $R_{W B 2}$ is the resistor between the W2 and B2 terminals.

Figure 4. Linear Noninverting Amplifier
The noninverting amplifier with pseudologarithmic gain is shown in Figure 5, and the gain is defined in Equation 4.

$$
\begin{equation*}
G=1+\frac{R_{W B 2}}{R_{A W 2}} \tag{4}
\end{equation*}
$$

where:
$R_{\text {WB2 }}$ is the resistor between the W 2 and B 2 terminals.
$R_{A W 2}$ is the resistor between the A 2 and W 2 terminals.

Figure 5. Pseudologarithmic Noninverting Amplifier

R43 and R42 can be used to set the maximum and minimum gain limits.
The inverting amplifier with linear gain is shown in Figure 6, and the gain is defined in Equation 5.

$$
\begin{equation*}
G=-\frac{R_{W B 2}}{R 38} \tag{5}
\end{equation*}
$$

where $R_{\text {WB2 }}$ is the resistor between the W 2 and B 2 terminals.

Figure 6. Linear Inverting Amplifier
The inverting amplifier with pseudologarithmic gain is shown in Figure 7, and the gain is defined in Equation 6.

$$
\begin{equation*}
G=-\frac{R_{W B 2}}{R_{A W 2}} \tag{6}
\end{equation*}
$$

where:
$R_{\text {WB2 } 2}$ is the resistor between the W 2 and B 2 terminals.
$R_{A W 2}$ is the resistor between the A 2 and W 2 terminals.

Figure 7. Pseudologarithmic Inverting Amplifier
R43 and R42 can be used to set the maximum and minimum gain limits.

Output Buffers

RDAC3 and RDAC4 can be connected to an output buffer as shown Figure 8 and Figure 9, respectively.

Figure 8. RDAC3

Figure 9. RDAC4

EVALUATION BOARD SOFTWARE

 INSTALLING THE SOFTWAREThe EVAL-AD5233SDZ evaluation kit includes evaluation board software provided on a CD. The software is compatible with Windows ${ }^{\circ} \mathrm{XP}$, Windows Vista, and Windows 7 (both 32-bit and 64-bit).
Install the software before connecting the SDP-B board to the USB port of the PC to ensure that the SDP-B board is recognized when it is connected to the PC.

1. Start the Windows operating system and insert the CD.
2. The installation software opens automatically. If it does not, run the setup.exe file from the CD.
3. After installation is completed, power up the evaluation board as described in the Power Supplies section.
4. Plug the EVAL-AD5233SDZ into the SDP-B board and the SDP-B board into the PC using the USB cable included in the box.
5. When the software detects the evaluation board, follow the instructions that appear to finalize the installation.
To uninstall the program, click Start $>$ Control Panel $>$ Add or Remove Programs > AD5233 Eval Board.

RUNNING THE SOFTWARE

To run the evaluation board software, do the following:

1. Click Start $>$ All Programs $>$ Analog Devices $>$ AD5233 $>$ AD5233 Eval Board.
2. If the SDP-B board is not connected to the USB port when the software is launched, a connectivity error is displayed (see Figure 10). Connect the evaluation board to the USB port of the PC, wait a few seconds, click Rescan, and follow the instructions.

Figure 10. Pop-Up Window Error
The main window of the EVAL-AD5233SDZ software then opens, as shown in Figure 11.

Figure 11. EVAL-AD5233SDZ Software Main Window

SOFTWARE OPERATION

The main window of the EVAL-AD5233SDZ software is divided into the following sections: QUICK COMMANDS, REGISTER ACCESS, $\overline{\mathbf{W P}}$, DIGITAL OUTPUTS, and
MEMORY. The features of the main window are as follows:

- The QUICK COMMANDS section allows you to send the AD5233 quick commands directly to the AD5233.
- The REGISTER ACCESS section can be used to update the RDAC registers by typing a value into a window and clicking WRITE. Alternatively, you can send a customized $\mathrm{I}^{2} \mathrm{C}$ data word by manually switching the scroll bars from 0 to 1 or from 1 to 0 , as desired, and then clicking SEND DATA. When WRITE is clicked or a quick command is executed, a write-read operation is performed, and the values displayed in this section are updated with the actual

RDAC register values. This function can be used to verify whether the write operation was completed successfully. The scroll bars are updated upon each write transfer.

- The $\overline{\mathbf{W P}}$ section enables or disables the AD5233 $\overline{\mathrm{WP}}$ pin.
- The /PR button generates a pulse in the $\overline{\mathrm{PR}}$ pin.
- You can pull the digital output pins, O1 and O2, high or low in the DIGITAL OPUTPUTS section. Clicking the STORE button stores the value in memory.
- The MEMORY section displays the data stored in the memory block. The data can be updated by switching the scroll bar from READ to WRITE, updating a particular window value, clicking UPDATE ALL or UPDATE
SINGLE, and selecting the memory location to write.
- Clicking EXIT closes the program but does not reset the part.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 12. Schematic of Multiboard Digital Potentiometers

DAC + FLOATING DAC + BW

Figure 13. Schematic of Multiboard RDACO Circuits

INVERTING AND NON-INVERTING WITH LINEAR AND PSEUDO-LOG GAIN

Figure 14. Schematic of Multiboard RDAC1 Circuits

Figure 16. Schematic of SDP-B Connector

Figure 17. Component Side View

Figure 18. Component Placement Drawing

Figure 19. Layer 2 Side PCB Drawing

Figure 20. Layer 3 Side PCB Drawing

Figure 21. Solder Side PCB Drawing

ORDERING INFORMATION

BILL OF MATERIALS

Table 7.

Qty	Reference Designator	Description	Supplier ${ }^{1 / P a r t ~ N u m b e r ~}$			
1	C1	10 nF capacitor, 0805	FEC 1692285			
4	C2, C4, C25, C26	$0.1 \mu \mathrm{~F}$ capacitor, 0603	FEC 138-2224			
1	C3	$1 \mu \mathrm{~F}$ capacitor, 0402	FEC 1288253			
2	C24, C27	$10 \mu \mathrm{~F}$ capacitor, 1206	FEC 1611967			
1	D6	LED, green	FEC 579-0852			
1	J1	3-pin connector	FEC 151790			
1	J2	2-pin connector	FEC 151789			
1	J22	Receptacle, $0.6 \mathrm{~mm}, 120$-way	Digi-Key H1219-ND			
4	A20, A21, A24, A25	Header, 2-row, $36+36$ way, and jumper socket, black	FEC 148-535 and FEC 150-410			
3	A27, A29, A30	Header, 1-row, 3-way, and jumper socket, black	FEC 102-2248 and FEC 150-410			
4	BUF-W1, OAVOUT, BUF-3, BUF-4	Header, 1-row, 2-way, and jumper socket, black	FEC 102-2247 and FEC 150-410			
1	R41	1.78 k Ω resistor, 0603, 1\%	FEC 1170811			
2	R1, R2	$2.2 \mathrm{k} \Omega$ resistor, 0603, 1\%	FEC 933-0810			
5	R3, R4, R38, R39, R40	$2.7 \mathrm{k} \Omega$ resistor, 1206, 1\%	FEC 9337288			
36	AD5162-1, AD5162-2, AD5172-1, AD5172-2, AD5204-1, AD5204-2, AD5204-3, AD5204-4, AD5222-1, AD5222-2, AD5232-1, AD5232-2, AD5233-1, AD5233-2, AD5233-3, AD5233-4, AD5235-1, AD5235-2, AD5243-1, AD5243-2, AD5252-1, AD5252-2, AD5233-1, AD5233-2, AD5233-3, AD5233-4, AD8403-1, AD8403-2, AD8403-3, AD8403-4, ADN2850-1, ADN2850-2, R34, R35, R42, R43	0Ω resistor, 0603	FEC 9331662			
1	R37	$1 \mathrm{k} \Omega$ resistor, 0603, 1\%	FEC 933-0380			
6	$3.3 \mathrm{~V}, 5 \mathrm{~V}$, DGND, AGND, VDD, VSS	Test point, PCB, black, PK100	FEC 873-1128			
35	A1, A2, A3, A4, RDY\|MODE, RESET_BF, SCL_BF, SCLK_BF, SDA_BF, SDO_BF, SHDN_BF, SYNC_BF, MUX-AO	CS, MUX-A1	DACSEL, MUX-A2	U/D, O1, O2, DIN_BF, CLK, B1, B2, B3, B4, V1, V2, VOUT, VOUT2, VOUT3, VOUT4, W1, W1_BUF, W2, W3, W4, WP_BUF	Test point, PCB , red, PK100	FEC 873-1144
1	U1	256-position, dual-channel, I I^{2} C-compatible digital potentiometer	Analog Devices AD5243			
1	U2	256-position, dual-channel, SPI digital potentiometer	Analog Devices AD5162			
1	U3	256-position, one-time programmable, dual-channel, $1^{2} \mathrm{C}$ digital potentiometer	Analog Devices AD5172			
1	U4	Nonvolatile, quad, 64-position digital potentiometer	Analog Devices AD5233			
1	U5	Dual, increment/decrement digital potentiometer	Analog Devices AD5222			
1	U6	4-channel digital potentiometer	Analog Devices AD8403			
1	U7	Quad, 256 -position, $I^{2} \mathrm{C}$, nonvolatile memory digital potentiometer	Analog Devices AD5254			
1	U8	4-channel digital potentiometer	Analog Devices AD5204			
1	U9	$I^{2} \mathrm{C}$, nonvolatile memory, dual, 256-position digital potentiometer	Analog Devices AD5252			
1	U10	Nonvolatile memory, dual, 256-position digital potentiometer	Analog Devices AD5232			
1	U11	Dual, 1024-position digital potentiometer with nonvolatile memory and SPI interface	Analog Devices AD5235			
1	U12	Dual, 1024-position digital rheostat with nonvolatile memory and SPI interface	Analog Devices ADN2850			

Qty	Reference Designator	Description	Supplier ${ }^{1 / P a r t ~ N u m b e r ~}$
1	U13	$2.5 \mathrm{~V} / 3.3 \mathrm{~V}, 16$-bit (dual 8-bit), two-port level translator bus switch Precision, 20 MHz, CMOS, quad, rail-to-rail operational amplifier	Analog Devices ADG3247
1	U14	50 MHz, precision, low distortion, low noise CMOS amplifier	Analog Devices AD8618
1	U15	$24 \mathrm{LC64} \mathrm{EEPROM}$	
1	U25	$3 \mathrm{~V} / 5 \mathrm{~V}, \pm 5 \mathrm{~V}$ CMOS, 8-channel analog multiplexer	FEC 975-8070
1	A22	Analog Devices ADG658	

${ }^{1}$ FEC refers to Farnell Electronic Component Distributors; Digi-Key refers to Digi-Key Corporation.

RELATED LINKS

Resource	Description
AD5243	Product Page, 256-Position Dual-Channel IC Compatible Digital Potentiometer
AD5162	Product Page, 256-Position Dual-Channel SPI Digital Potentiometer
AD5233	Product Page, Nonvolatile, Quad, 64-Position Digital Potentiometer
AD5222	Product Page, Dual, Increment/Decrement Digital Potentiometer
AD8403	Product Page, 4-Channel Digital Potentiometer
AD5254	Product Page, Quad 256-Position I ${ }^{2}$ C Nonvolatile Memory, Digital Potentiometer
AD5204	Product Page, 4-Channel Digital Potentiometer
AD5252	Product Page, I2C, Nonvolatile Memory, Dual 256-Position Digital Potentiometer
AD5232	Product Page, Nonvolatile Memory, Dual, 256-Position Digital Potentiometer
AD5235	Product Page, Nonvolatile Memory, Dual 1024-Position Digital Potentiometer
ADN2850	Product Page, Nonvolatile Memory, Dual 1024-Position Digital Resistor
ADG3247	Product Page, 2.5 V/3.3 V, 16-Bit (Dual 8-Bit), 2-Port Level Translator, Bus Switch
ADG658	Product Page, $3 \mathrm{~V} / 5 \mathrm{~V} \pm 5 \mathrm{~V}$ CMOS 8-Channel Analog Multiplexer
AD8652	Product Page, 50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifier
AD8618	Product Page, Precision 20 MHz CMOS Quad Rail-to-Rail Operational Amplifier

NOTES

${ }^{12} C$ refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

[^0]
Legal Terms and Conditions

 submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

[^0]: ESD Caution
 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

